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Motivation

̶ Energy savings are nowadays much welcome, especially:

̶ in cloud applications run many times, expensive AI, supercomputing, …, or

̶ battery-powered devices.

̶ Slow applications can disappoint customers.

̶ Performance bugs – e.g., “accidentally quadratic” – can also kill a system completely:

̶ Apache Spark: an internal check for uniqueness

→ hanging effectively forever for a large job batch.

̶ StackOverflow: A regular expression for stripping whitespaces

→ a 34 minutes long outage.

̶ Chrome: one the parsers

→ a noticeable slowdown for long lines.
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Overview of Perun

A complex solution for software performance analysis and testing:

̶ Collects/imports performance data.

̶ eBPF, SystemTap, static analysis, GNU perf, …

̶ Various optimizations of the collection process.

̶ Integrates version control systems.

̶ Maintains links of data to project versions.

̶ Creates performance models.

̶ Constant c, linear a.n+b, ... 

̶ Detects performance changes.

̶ Degradations, optimizations. 

̶ Supports performance fuzzing.

̶ Generation of performance stressing inputs.

̶ Visualizes performance and its changes.
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Performance Models in Perun

Mathematical functions of 

the input size 

(a.n + b, a.n2 + b.n + c, …)

or 

statistical summaries 

(average, median, …) 

describing the main 

features of the profile.
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Perun: Detection of Performance Changes

Multiple algorithms for detecting changes in the performance of program functions or 

entire programs are implemented in Perun:

̶ best model order equality,

̶ integral comparison,

̶ ...,

̶ exclusive-time outliers

̶ several statistical methods for detecting

changes of different severity.

Can be done on models or also raw profiles.
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Perun: Example of Degradation Detection

̶ CPython: Reference C implementation of a Python interpreter.

̶ Issue #923564: A performance regression in ctypes module:

≈ 8% higher function call overhead (py3.11.0a7 vs. py3.10.4).

̶ Detection in Perun:
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Perun: Example of Degradation Detection

̶ CPython: Reference C implementation of a Python interpreter.

̶ Issue #923564: A performance regression in the ctypes module:

≈ 8% higher function call overhead (py3.11.0a7 vs. py3.10.4).

̶ Detection in Perun:
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Perun: Visualisation

A rich set of various visualisations of performance data.
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Perun: Summary of Results

Academia

̶ Cooperation: Red Hat, FIT BUT, FI MUNI, recently also interest from TU Graz.

̶ From academia to industry and now back again.

̶ Papers: 1 published tool paper (ICSME’22, CORE A), 1 accepted paper pending publication, 1 paper in preparation.

̶ Talks: DevConf’24, CHESS project’23, RH Research Days’20 and ‘24, RH PerfConf’23, etc.

̶ Students: 15+ BSc and master theses extending Perun, 2 supported PhD students.

̶ Platform: further research, trying out new ideas, experiments.

Industry

̶ Perun integrated into the Red Hat Kernel Performance Engineering Team analysis toolchain and CI.

̶ Significant time savings, ranging from 1.5 hours up to 1 man-day, on performance drops.

̶ E.g.: excessive calls to XFS file system functions, needless calls to SELinux policy functions, …
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