
Perun: Performance Under Control1/9

Perun: Performance Under Control
Collaboration between Red Hat, FIT BUT, FI MUNI

T. Fiedor, J. Pavela, T. Vojnar, and many others



Perun: Performance Under Control2/9

Motivation

̶ Energy savings are nowadays much welcome, especially:

̶ in cloud applications run many times, expensive AI, supercomputing, …, or

̶ battery-powered devices.

̶ Slow applications can disappoint customers.

̶ Performance bugs – e.g., “accidentally quadratic” – can also kill a system completely:

̶ Apache Spark: an internal check for uniqueness

→ hanging effectively forever for a large job batch.

̶ StackOverflow: A regular expression for stripping whitespaces

→ a 34 minutes long outage.

̶ Chrome: one the parsers

→ a noticeable slowdown for long lines.



Perun: Performance Under Control3/9

Overview of Perun

A complex solution for software performance analysis and testing:

̶ Collects/imports performance data.

̶ eBPF, SystemTap, static analysis, GNU perf, …

̶ Various optimizations of the collection process.

̶ Integrates version control systems.

̶ Maintains links of data to project versions.

̶ Creates performance models.

̶ Constant c, linear a.n+b, ... 

̶ Detects performance changes.

̶ Degradations, optimizations. 

̶ Supports performance fuzzing.

̶ Generation of performance stressing inputs.

̶ Visualizes performance and its changes.

Tracer

Collectors

Fuzzing

Generators

Profile

and

Runners 

GIT

SVN

VCS

Regression

Analysis 

Filter

Postprocess

By Average

By Statistics

Detection

By Complexity

Scatter Plot

Flame Graph

Interpretation

CLI

Collect

Call

Calls

Generate

Workload 

Uses

Generates

Call

Uses

Call

Interacts

with 

Bounds

PERUN

Interact

with 

Least Squares

Regressogram

Kernel Estimate

Loopus

Cost

SystemTap

eBPF



Perun: Performance Under Control4/9

Performance Models in Perun

Mathematical functions of 

the input size 

(a.n + b, a.n2 + b.n + c, …)

or 

statistical summaries 

(average, median, …) 

describing the main 

features of the profile.



Perun: Performance Under Control5/9

Perun: Detection of Performance Changes

Multiple algorithms for detecting changes in the performance of program functions or 

entire programs are implemented in Perun:

̶ best model order equality,

̶ integral comparison,

̶ ...,

̶ exclusive-time outliers

̶ several statistical methods for detecting

changes of different severity.

Can be done on models or also raw profiles.
(.perun)

Postprocessing Degradation Detection

Postprocessed Profile Performance Changes

Target Models

y = b1f(x) + b0

Target Models

y = b1f(x) + b0

...
...

Baseline Models

y = b1f(x) + b0

Performance 
Degradation

Performance 
Optimization

Unknown
Check

No Change



Perun: Performance Under Control6/9

Perun: Example of Degradation Detection

̶ CPython: Reference C implementation of a Python interpreter.

̶ Issue #923564: A performance regression in ctypes module:

≈ 8% higher function call overhead (py3.11.0a7 vs. py3.10.4).

̶ Detection in Perun:



Perun: Performance Under Control7/9

Perun: Example of Degradation Detection

̶ CPython: Reference C implementation of a Python interpreter.

̶ Issue #923564: A performance regression in the ctypes module:

≈ 8% higher function call overhead (py3.11.0a7 vs. py3.10.4).

̶ Detection in Perun:



Perun: Performance Under Control8/9

Perun: Visualisation

A rich set of various visualisations of performance data.



Perun: Performance Under Control9/9

Perun: Summary of Results

Academia

̶ Cooperation: Red Hat, FIT BUT, FI MUNI, recently also interest from TU Graz.

̶ From academia to industry and now back again.

̶ Papers: 1 published tool paper (ICSME’22, CORE A), 1 accepted paper pending publication, 1 paper in preparation.

̶ Talks: DevConf’24, CHESS project’23, RH Research Days’20 and ‘24, RH PerfConf’23, etc.

̶ Students: 15+ BSc and master theses extending Perun, 2 supported PhD students.

̶ Platform: further research, trying out new ideas, experiments.

Industry

̶ Perun integrated into the Red Hat Kernel Performance Engineering Team analysis toolchain and CI.

̶ Significant time savings, ranging from 1.5 hours up to 1 man-day, on performance drops.

̶ E.g.: excessive calls to XFS file system functions, needless calls to SELinux policy functions, …


	Slide 1: Perun: Performance Under Control Collaboration between Red Hat, FIT BUT, FI MUNI
	Slide 2: Motivation
	Slide 3: Overview of Perun
	Slide 4: Performance Models in Perun
	Slide 5: Perun: Detection of Performance Changes
	Slide 6: Perun: Example of Degradation Detection
	Slide 7: Perun: Example of Degradation Detection
	Slide 8: Perun: Visualisation
	Slide 9: Perun: Summary of Results

